Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Molecules ; 28(7)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049870

RESUMO

Acacia implexa, Eucalyptus rossii and Exocarpos cupressiformis are native plants of Australia, which were used by the First Peoples for medicinal purposes. In this study, 70% aqueous ethanol crude extracts were prepared from A. implexa bark and leaves, E. rossii leaves and E. cupressiformis leaves, and partitioned via sequential extraction with n-hexane, dichloromethane (DCM), ethyl acetate and ethanol. The crude extracts and fractions were screened for antioxidant activity using a novel, high-throughput lipid-based antioxidant assay, as well as the aqueous ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assay and the Folin-Ciocalteu test for total phenols. In the lipid-based assay, non-polar n-hexane and DCM fractions showed higher antioxidant activity against the formation of peroxides and thiobarbituric acid reactive substances (TBARS) than the other fractions, whereas the non-polar fractions were not effective in aqueous assays. This illustrates that the high potential of the lipid-soluble n-hexane and DCM fractions as antioxidants would have been missed if only aqueous-based assays were used. In addition, the potent antioxidant compounds were putatively annotated using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-qTOF-MS). Gallic acid, (+)-catechin, (-)-epicatechin and tannins were found in most crude extracts.


Assuntos
Antioxidantes , Catequina , Antioxidantes/química , Austrália , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Etanol , Lipídeos , Flavonoides/análise
4.
Plants (Basel) ; 10(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34961022

RESUMO

Gymnosperms are generally regarded as poor resprouters, especially when compared to angiosperms and particularly following major disturbance. However, is it this clear-cut? This review investigates two main aspects of gymnosperm resprouting: (i) various papers have provided exceptions to the above generalization-how frequent are these exceptions and are there any taxonomic trends?; and (ii) assuming gymnosperms are poor resprouters are there any anatomical or physiological reasons why this is the case? Five of six non-coniferous gymnosperm genera and 24 of 80 conifer genera had at least one species with a well-developed resprouting capability. This was a wider range than would be expected from the usual observation 'gymnosperms are poor resprouters'. All conifer families had at least three resprouting genera, except the monospecific Sciadopityaceae. Apart from the aboveground stem, buds were also recorded arising from more specialised structures (e.g., lignotubers, tubers, burls and underground stems). In some larger genera it appeared that only a relatively small proportion of species were resprouters and often only when young. The poor resprouting performance of mature plants may stem from a high proportion of apparently 'blank' leaf axils. Axillary meristems have been recorded in a wide range of conifer species, but they often did not form an apical dome, leaf primordia or vascular connections. Buds or meristems that did form often abscised at an early stage. While this review has confirmed that conifers do not resprout to the same degree as angiosperms, it was found that a wide diversity of gymnosperm genera can recover vegetatively after substantial disturbance. Further structural studies are needed, especially of: (i) apparently blank leaf axils and the initial development of axillary meristems; (ii) specialised regeneration structures; and (iii) why high variability can occur in the resprouting capacity within species of a single genus and within genera of the same family.

5.
Plants (Basel) ; 9(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371406

RESUMO

Small diameter branchlets and smooth barked stems and branches of most woody plants have chloroplasts. While the stems of several eucalypt species have been shown to photosynthesise, the distribution of chloroplasts has not been investigated in detail. The distribution of chloroplasts in branchlets (23 species) and larger diameter stems and branches with smooth bark (14 species) was investigated in a wide range of eucalypts (species of Angophora, Corymbia and Eucalyptus) using fresh hand sections and a combination of bright field and fluorescence microscopy. All species had abundant stem chloroplasts. In both small and large diameter stems, the greatest concentration of chloroplasts was in a narrow band (usually 100-300 µm thick) immediately beneath the epidermis or phellem. Deeper chloroplasts were present but at a lower density due to abundant fibres and sclereids. In general, chloroplasts were found at greater depths in small diameter stems, often being present in the secondary xylem rays and the pith. The cells of the chlorenchyma band were small, rounded and densely packed, and unlike leaf mesophyll. A high density of chloroplasts was found just beneath the phellem of large diameter stems. These trees gave no external indication that green tissues were present just below the phellem. In these species, a thick phellem was not present to protect the inner living bark. Along with the chlorenchyma, the outer bark also had a high density of fibres and sclereids. These sclerenchyma cells probably disrupted a greater abundance and a more organised arrangement of the cells containing chloroplasts. This shows a possible trade-off between photosynthesis and the typical bark functions of protection and mechanical strength.

6.
Antioxidants (Basel) ; 9(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709074

RESUMO

With an increase in the longevity and thus the proportion of the elderly, especially in developed nations, there is a rise in pathological conditions that accompany ageing, such as neurodegenerative disorders. Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive and memory decline. The pathophysiology of the disease is poorly understood, with several factors contributing to its development, such as oxidative stress, neuroinflammation, cholinergic neuronal apoptotic death, and the accumulation of abnormal proteins in the brain. Current medications are only palliative and cannot stop or reverse the progression of the disease. Recent clinical trials of synthetic compounds for the treatment of AD have failed because of their adverse effects or lack of efficacy. Thus, there is impetus behind the search for drugs from natural origins, in addition to the discovery of novel, conventional therapeutics. Mints have been used traditionally for conditions relevant to the central nervous system. Recent studies showed that mint extracts and/or their phenolic constituents have a neuroprotective potential and can target multiple events of AD. In this review, we provide evidence of the potential role of mint extracts and their derivatives as possible sources of treatments in managing AD. Some of the molecular pathways implicated in the development of AD are reviewed, with focus on apoptosis and some redox pathways, pointing to mechanisms that may be modulated for the treatment of AD, and the need for future research invoking knowledge of these pathways is highlighted.

7.
Nutrients ; 12(5)2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32397683

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with an unclear cause. It appears that multiple factors participate in the process of neuronal damage including oxidative stress and accumulation of the protein amyloid ß (Aß) in the brain. The search for a treatment for this disorder is essential as current medications are limited to alleviating symptoms and palliative effects. The aim of this study is to investigate the effects of mint extracts on selected mechanisms implicated in the development of AD. To enable a thorough investigation of mechanisms, including effects on ß-secretase (the enzyme that leads to the formation of Aß), on Aß aggregation, and on oxidative stress and apoptosis pathways, a neuronal cell model, SH-SY5Y cells, was selected. Six Mentha taxa were investigated for their in vitro ß-secretase (BACE) and Aß-aggregation inhibition activities. Moreover, their neuroprotective effects on H2O2-induced oxidative stress and apoptosis in SH-SY5Y cells were evaluated through caspase activity. Real-time PCR and Western blot analysis were carried out for the two most promising extracts to determine their effects on signalling pathways in SH-SY5Y cells. All mint extracts had strong BACE inhibition activity. M. requienii extracts showed excellent inhibition of Aß-aggregation, while other extracts showed moderate inhibition. M. diemenica and M. requienii extracts lowered caspase activity. Exposure of SH-SY5Y cells to M. diemenica extracts resulted in a decrease in the expression of pro-apoptotic protein, Bax, and an elevation in the anti-apoptotic protein, Bcl-xL, potentially mediated by down-regulation of the ASK1-JNK pathway. These results indicate that mint extracts could prevent the formation of Aß and also could prevent their aggregation if they had already formed. M. diemenica and M. requienii extracts have potential to suppress apoptosis at the cellular level. Hence, mint extracts could provide a source of efficacious compounds for a therapeutic approach for AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Apoptose/efeitos dos fármacos , Peróxido de Hidrogênio/efeitos adversos , Mentha/química , Fármacos Neuroprotetores , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Doença de Alzheimer/etiologia , Secretases da Proteína Precursora do Amiloide/efeitos adversos , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Apoptose/genética , Linhagem Celular , Humanos , MAP Quinase Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
8.
Am J Bot ; 100(12): 2307-17, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24322894

RESUMO

PREMISE OF THE STUDY: Solanum elaeagnifolium (silverleaf nightshade), having originated in the Americas, is now a serious summer-growing, perennial weed in many countries, including Australia. Most surfaces of the plants have a dense covering of trichomes, giving them a silvery-white appearance, hence the common name. We aimed to identify structural and functional properties of its leaves, especially the trichomes, that may affect the uptake of foliar-applied tracer dyes. METHODS: The structure of leaves of Solanum elaeagnifolium was examined by light and scanning electron microscopy. The potential for transport of materials between trichomes and veins was studied with symplastic (carboxyfluorescein diacetate) and apoplastic (lucifer yellow) tracer dyes. KEY RESULTS: Mature leaves had a dense covering of complex, stellate trichomes on both surfaces, particularly the abaxial. The basal cells of Solanum elaeagnifolium trichomes penetrated into the underlying palisade mesophyll layers. The innermost lobes of these basal cells sometimes contacted the bundle sheath of the veins, but were not observed to directly contact the xylem or phloem. We found that neither symplastic nor apoplastic dyes were transferred between the basal cells of the trichomes and the vascular tissues. The trichome layer repelled water-based tracer dyes, while one of four adjuvants tested facilitated entry of both symplastic and apoplastic dyes. CONCLUSIONS: Our results did not support a transport function for the trichomes. The trichomes may protect the mesophytic leaves from invertebrate herbivory, while also probably decreasing radiation absorbed resulting in cooler leaves in this summer-growing species.


Assuntos
Floema/fisiologia , Folhas de Planta/fisiologia , Transpiração Vegetal , Solanum/fisiologia , Tricomas/fisiologia , Xilema/fisiologia , Austrália , Transporte Biológico , Corantes Fluorescentes , Plantas Daninhas
9.
Ann Bot ; 109(1): 1-2; discussion 3-4, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21868407

RESUMO

BACKGROUND: The branches of Wollemia nobilis are unbranched; however, it has been noted that new branches can form from the distal end of damaged ones, and branches can grow from axillary structures once a terminal strobilus has fallen. Tomlinson and Huggett (2011, Annals of Botany 107: 909-916) have recently investigated the formation of these reiterative branches and stated in the title of their paper that 'Partial shoot reiteration in Wollemia nobilis (Araucariaceae) does not arise from "axillary meristems"'. They go on to state 'Further research may reveal the presence of these elusive, but still only hypothetical, axillary meristems'. RESPONSE: In this Viewpoint, I argue that Tomlinson and Huggett do not refer to previously published information that indicates that axillary meristems are present in Wollemia nobilis branch leaf axils, and that their anatomical methods were probably not optimal for locating and examining these minute structures. Thus, whilst I would agree that the axillary meristems in branch leaf axils of Wollemia nobilis are elusive, I contend that they are not hypothetical.


Assuntos
Meristema/crescimento & desenvolvimento , Traqueófitas/crescimento & desenvolvimento
10.
Nat Commun ; 2: 193, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21326225

RESUMO

Fire is a major modifier of communities, but the evolutionary origins of its prevalent role in shaping current biomes are uncertain. Australia is among the most fire-prone continents, with most of the landmass occupied by the fire-dependent sclerophyll and savanna biomes. In contrast to biomes with similar climates in other continents, Australia has a tree flora dominated by a single genus, Eucalyptus, and related Myrtaceae. A unique mechanism in Myrtaceae for enduring and recovering from fire damage likely resulted in this dominance. Here, we find a conserved phylogenetic relationship between post-fire resprouting (epicormic) anatomy and biome evolution, dating from 60 to 62 Ma, in the earliest Palaeogene. Thus, fire-dependent communities likely existed 50 million years earlier than previously thought. We predict that epicormic resprouting could make eucalypt forests and woodlands an excellent long-term carbon bank for reducing atmospheric CO(2) compared with biomes with similar fire regimes in other continents.


Assuntos
Evolução Biológica , Ecossistema , Incêndios , Myrtaceae/fisiologia , Filogenia , Sequência de Bases , Teorema de Bayes , Biologia Computacional , DNA Espaçador Ribossômico/genética , Modelos Genéticos , Myrtaceae/anatomia & histologia , Myrtaceae/genética , Paleontologia , Caules de Planta/anatomia & histologia , Caules de Planta/crescimento & desenvolvimento , Alinhamento de Sequência , Análise de Sequência de DNA
11.
Am J Bot ; 97(4): 545-56, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21622417

RESUMO

Determining the location of buds and bud-forming meristems and hence the level of protection from heat is essential to understanding plant response to fire. Most eucalypts resprout readily from the stem (epicormic resprouting) and the base after felling or high intensity fire. In contrast, Eucalyptus regnans is one of the few eastern Australian fire-sensitive, obligate seeder eucalypts. Some authors have suggested that the relatively weak epicormic resprouting is due to a lack of bud-forming structures. Epicormic strands from the bark and outer xylem of three very large trees and two saplings were examined anatomically. Epicormic bud-forming structures were found in all samples examined. The bud-forming capacity consisted of narrow, radially elongated strips of cells of meristematic appearance. These strips were continuous from the outermost secondary xylem through to the outer bark. Bark was relatively thick at the base of the large trees, but remarkably thin above this basal skirt. Eucalyptus regnans was found to possess the apparently fire-adapted epicormic strands previously described in other eucalypts, thus showing its fire-adapted lineage. However, this fire-sensitive species apparently directs much of its resources to rapid height-growth rates in younger trees, rather than to vegetative fire survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...